Fractional Poincaré and localized Hardy inequalities on metric spaces

نویسندگان

چکیده

Abstract We prove fractional Sobolev–Poincaré inequalities, capacitary versions of Poincaré and pointwise localized Hardy inequalities in a metric space equipped with doubling measure. Our results generalize extend earlier work where such have been considered the Euclidean spaces or non-fractional setting spaces. The concerning variants are new even case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks about Hardy Inequalities on Metric Trees

where ψ > 0 is the so-called Hardy weight and C(Γ, ψ) is a positive constant which might depend on Γ and ψ, but which is independent of u. Evans, Harris and Pick [EHP] found a necessary and sufficient condition such that (1.1) holds for all functions u on Γ such that u(o) = 0 and such that the integral on the right hand side is finite. They consider even the case of non-symmetric Hardy weights....

متن کامل

Hardy Inequalities for Fractional Integrals on General Domains

We prove a sharp Hardy inequality for fractional integrals for functions that are supported on a general domain. The constant is the same as the one for the half-space and hence our result settles a recent conjecture of Bogdan and Dyda [2].

متن کامل

Sharp Fractional Hardy Inequalities in Half-spaces Rupert L. Frank and Robert Seiringer

We determine the sharp constant in the Hardy inequality for fractional Sobolev spaces on half-spaces. Our proof relies on a non-linear and non-local version of the ground state representation.

متن کامل

Characterizations of Sobolev Inequalities on Metric Spaces

We present isocapacitary characterizations of Sobolev inequalities in very general metric measure spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Calculus of Variations

سال: 2022

ISSN: ['1864-8258', '1864-8266']

DOI: https://doi.org/10.1515/acv-2021-0069